Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
DNA Cell Biol ; 43(3): 132-140, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38386995

RESUMO

Genetic variation and epigenetic factors are thought to contribute to the development of hypersensitivity to aspirin. DNA methylation fluctuates dynamically throughout the day. To discover new CpG methylation in lymphocytes associated with aspirin-exacerbated respiratory disease (AERD), we evaluated changes in global CpG methylation profiles from before to after an oral aspirin challenge in patients with AERD and aspirin-tolerant asthma (ATA). Whole-genome CpG methylation levels of peripheral blood mononuclear cells were quantified with an Illumina 860K Infinium Methylation EPIC BeadChip array and then adjusted for inferred lymphocyte fraction (ILF) with GLINT and Tensor Composition Analysis. Among the 866,091 CpGs in the array, differentially methylated CpGs (DMCs) were found in 6 CpGs in samples from all 12 patients with asthma included in the study (AERD, n = 6; ATA, n = 6). DMCs were found in 3 CpGs in the 6 ATA samples and in 615 CpGs in the 6 AERD samples. A total of 663 DMCs in 415 genes and 214 intergenic regions differed significantly in the AERD compared with the ATA. In promoters, 126 CpG loci were predicted to bind to 38 transcription factors (TFs), many of which were factors already known to be involved in the pathogenesis of asthma and immune responses. In conclusion, we identified 615 new CpGs methylated in peripheral blood lymphocytes by oral aspirin challenge in AERD but not in ATA. These findings indicate that oral aspirin challenge induces epigenetic changes in ILFs, specifically in AERD patients, possibly via changes in TF binding, which may have epigenetic effects on the development of AERD.


Assuntos
Asma Induzida por Aspirina , Asma , Humanos , Aspirina/efeitos adversos , Leucócitos Mononucleares/metabolismo , Metilação de DNA , Asma Induzida por Aspirina/genética , Asma Induzida por Aspirina/metabolismo , Asma/genética , Linfócitos/metabolismo
2.
Exp Mol Med ; 56(2): 478-490, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38413821

RESUMO

Idiopathic pulmonary fibrosis (IPF) is characterized by aberrant lung remodeling and the excessive accumulation of extracellular matrix (ECM) proteins. In a previous study, we found that the levels of ornithine aminotransferase (OAT), a principal enzyme in the proline metabolism pathway, were increased in the lungs of patients with IPF. However, the precise role played by OAT in the pathogenesis of IPF is not yet clear. The mechanism by which OAT affects fibrogenesis was assessed in vitro using OAT-overexpressing and OAT-knockdown lung fibroblasts. The therapeutic effects of OAT inhibition were assessed in the lungs of bleomycin-treated mice. OAT expression was increased in fibrotic areas, principally in interstitial fibroblasts, of lungs affected by IPF. OAT levels in the bronchoalveolar lavage fluid of IPF patients were inversely correlated with lung function. The survival rate was significantly lower in the group with an OAT level >75.659 ng/mL than in the group with an OAT level ≤75.659 ng/mL (HR, 29.53; p = 0.0008). OAT overexpression and knockdown increased and decreased ECM component production by lung fibroblasts, respectively. OAT knockdown also inhibited transforming growth factor-ß1 (TGF)-ß1 activity and TGF-ß1 pathway signaling. OAT overexpression increased the generation of mitochondrial reactive oxygen species (ROS) by activating proline dehydrogenase. The OAT inhibitor L-canaline significantly attenuated bleomycin-induced lung injury and fibrosis. In conclusion, increased OAT levels in lungs affected by IPF contribute to the progression of fibrosis by promoting excessive mitochondrial ROS production, which in turn activates TGF-ß1 signaling. OAT may be a useful target for treating patients with fibrotic lung diseases, including IPF.


Assuntos
Fibrose Pulmonar Idiopática , Fator de Crescimento Transformador beta1 , Animais , Humanos , Camundongos , Bleomicina , Proteínas da Matriz Extracelular , Fibrose , Pulmão/enzimologia , Ornitina-Oxo-Ácido Transaminase , Espécies Reativas de Oxigênio
3.
Biosens Bioelectron ; 250: 116061, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38278123

RESUMO

The outbreak of emerging infectious diseases gave rise to the demand for reliable point-of-care testing methods to diagnose and manage those diseases in early onset. However, the current on-site testing methods including lateral flow immunoassay (LFIA) suffer from the inaccurate diagnostic result due to the low sensitivity. Herein, we present the surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-LFIA) by introducing phage-templated hierarchical plasmonic assembly (PHPA) nanoprobes to diagnose a contagious disease. The PHPA was fabricated using gold nanoparticles (AuNPs) assembled on bacteriophage MS2, where inter-particle gap sizes can be adjusted by pH-induced morphological alteration of MS2 coat proteins to provide the maximum SERS amplification efficiency via plasmon coupling. The plasmonic probes based on the PHPA produce strong and reproducible SERS signal that leads to sensitive and reliable diagnostic results in SERS-LFIA. The developed SERS-LFIA targeting severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) antibodies for a proof of concept had <100 pg/mL detection limits with high specificity in serum, proving it as an effective diagnostic device for the infectious diseases. Clinical validation using human serum samples further confirmed that the PHPA-based SERS-LFIA can distinguish the patients with COVID-19 from healthy controls with significant accuracy. These outcomes prove that the developed SERS-LFIA biosensor can be an alternative point-of-care testing (POCT) method against the emerging infectious diseases, in combination with the commercially available portable Raman devices.


Assuntos
Bacteriófagos , Técnicas Biossensoriais , Doenças Transmissíveis Emergentes , Doenças Transmissíveis , Nanopartículas Metálicas , Humanos , Ouro , Sistemas Automatizados de Assistência Junto ao Leito , Análise Espectral Raman/métodos , Limite de Detecção , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , SARS-CoV-2 , Concentração de Íons de Hidrogênio
4.
Biosens Bioelectron ; 250: 116085, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295582

RESUMO

The differential diagnosis between mild cognitive impairment (MCI) and Alzheimer's disease (AD) has been highly demanded for its effectiveness in preventing and contributing to early diagnosis of AD. To this end, we developed a single plasmonic asymmetric nanobridge (PAN)-based biosensor to differentially diagnose MCI and AD by quantitative profiling of phosphorylated tau proteins (p-tau) in clinical plasma samples, which revealed a significant correlation with AD development and progression. The PAN was designed to have a conductive junction and asymmetric structure, which was unable to be synthesized by the traditional thermodynamical methods. For its unique morphological characteristics, PAN features high electromagnetic field enhancement, enabling the biosensor to achieve high sensitivity, with a limit of detection in the attomolar regime for quantitative analysis of p-tau. By introducing support vector machine (SVM)-based machine learning algorithm, the improved diagnostic system was achieved for prediction of healthy controls, MCI, and AD groups with an accuracy of 94.47 % by detecting various p-tau species levels in human plasma. Thus, our proposed PAN-based plasmonic biosensor has a powerful potential in clinical utility for predicting the onset of AD progression in the asymptomatic phase.


Assuntos
Doença de Alzheimer , Técnicas Biossensoriais , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico , Proteínas tau , Diagnóstico Diferencial , Peptídeos beta-Amiloides , Biomarcadores , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/psicologia
5.
J Korean Med Sci ; 39(1): e13, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38193329

RESUMO

BACKGROUND: Neutrophilic inflammation is a characteristic feature of idiopathic pulmonary fibrosis (IPF). S100 calcium-binding protein A9 (S100A9) is a neutrophil-derived protein involved in the development of neutrophil-related chronic inflammatory disorders. However, the role of S100A9 in IPF remains unclear. METHODS: We used enzyme-linked immunosorbent assays to measure S100A9 levels in bronchoalveolar lavage fluid (BALF) and serum obtained from healthy controls (HCs) and patients with IPF, non-specific interstitial pneumonia, hypersensitivity pneumonitis, and sarcoidosis. RESULTS: Compared with HCs, BALF S100A9 levels were significantly higher in IPF patients (P < 0.001), patients with hypersensitivity pneumonitis (P = 0.043), and patients with nonspecific interstitial pneumonia (P < 0.001). The S100A9 level in BALF of 0.093 ng/mL could distinguish IPF patients from HCs, with a specificity of 78.8% and a sensitivity of 81.6%. Similarly, the S100A9 level in BALF of 0.239 ng/mL had a specificity of 64.7% and a sensitivity of 66.7% for distinguishing IPF patients from patients with other interstitial lung diseases. Additionally, BALF S100A9 levels were significantly correlated with neutrophil counts (r = 0.356, P < 0.001) in BALF. IPF patients with S100A9 levels in BALF > 0.533 ng/mL had lower survival rates, compared with patients who had levels ≤ 0.553 ng/mL (n = 49; hazard ratio [HR], 3.62; P = 0.021). Combination analysis revealed that IPF patients with S100A9 levels in BALF> 0.553 ng/mL or neutrophil percentages > 49.1% (n = 43) had significantly lower survival rates than patients with S100A9 levels in BALF ≤ 0.553 ng/mL and neutrophil percentages ≤ 49.1% (n = 41) (HR, 3.91; P = 0.014). Additionally, patients with serum S100A9 levels > 0.077 ng/mL (n = 29) had significantly lower survival rates than patients with levels ≤ 0.077 ng/mL (n = 53, HR, 2.52; P = 0.013). S100A9 was expressed on neutrophils and macrophages in BALF from IPF patients as well as α-smooth muscle actin positive cells in the lung tissues. CONCLUSION: S100A9 is involved in the development and progression of IPF. Moreover, S100A9 levels in BALF and serum may be surrogate markers for IPF diagnosis and survival prediction, particularly when analyzed in combination with neutrophil percentages.


Assuntos
Alveolite Alérgica Extrínseca , Fibrose Pulmonar Idiopática , Humanos , Fibrose Pulmonar Idiopática/diagnóstico , Inflamação , Líquido da Lavagem Broncoalveolar , Calgranulina B
6.
J Hazard Mater ; 464: 132932, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-37988864

RESUMO

Chronic obstructive pulmonary disease (COPD) is a group of illnesses associated with unresolved inflammation in response to toxic environmental stimuli. Persistent exposure to PM is a major risk factor for COPD, but the underlying mechanism remains unclear. Using our established mouse model of PM-induced COPD, we find that repeated PM exposure provokes macrophage-centered chronic inflammation and COPD development. Mechanistically, chronic PM exposure induces transcriptional downregulation of HAAO, KMO, KYNU, and QPRT in macrophages, which are the enzymes of de novo NAD+ synthesis pathway (kynurenine pathway; KP), via elevated chromatin binding of the CCCTC-binding factor (CTCF) near the transcriptional regulatory regions of the enzymes. Subsequent reduction of NAD+ and SIRT1 function increases histone acetylation, resulting in elevated expression of pro-inflammatory genes in PM-exposed macrophages. Activation of SIRT1 by nutraceutical resveratrol mitigated PM-induced chronic inflammation and COPD development. In agreement, increased levels of histone acetylation and decreased expression of KP enzymes were observed in pulmonary macrophages of COPD patients. We newly provide an evidence that dysregulated NAD+ metabolism and consecutive SIRT1 deficiency significantly contribute to the pathological activation of macrophages during PM-mediated COPD pathogenesis. Additionally, targeting PM-induced intertwined metabolic and epigenetic reprogramming in macrophages is an effective strategy for COPD treatment.


Assuntos
Material Particulado , Doença Pulmonar Obstrutiva Crônica , Animais , Camundongos , Humanos , Material Particulado/toxicidade , Material Particulado/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Sirtuína 1/farmacologia , Histonas/metabolismo , NAD/metabolismo , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/genética , Macrófagos , Inflamação/metabolismo , Epigênese Genética
7.
RSC Adv ; 13(39): 27225-27232, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37701275

RESUMO

Serological detection of antibodies for diagnosing infectious diseases has advantages in facile diagnostic procedures, thereby contributing to controlling the spread of the pathogen, such as in the recent SARS-CoV-2 pandemic. Lateral flow immunoassay (LFIA) is a representative serological antibody detection method suitable for on-site applications but suffers from low clinical accuracy. To achieve a simple and rapid serological screening as well as the sensitive quantification of antibodies against SARS-CoV-2, a colorimetric and fluorescent dual-mode serological LFIA sensor incorporating metal-enhanced fluorescence (MEF) was developed. For the strong fluorescence signal amplification, fluorophore Cy3 was immobilized onto gold nanoparticles (AuNPs) with size-controllable spacer polyethyleneglycol (PEG) to maintain an optimal distance to induce MEF. The sensor detects the target IgG with a concentration as low as 1 ng mL-1 within 8 minutes. The employment of the MEF into the dual-mode serological LFIA sensor shows a 1000-fold sensitivity improvement compared with that of colorimetric LFIAs. The proposed serological LFIA sensor was tested with 73 clinical samples, showing sensitivity, specificity, and accuracy of 95%, 100%, and 97%, respectively. In conclusion, the dual-mode serological LFIA has great potential for application in diagnosis and an epidemiological survey of vaccine efficacy and immunity status of individuals.

8.
Int J Mol Sci ; 24(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37373330

RESUMO

Novel genetic and epigenetic factors involved in the development and prognosis of idiopathic pulmonary fibrosis (IPF) have been identified. We previously observed that erythrocyte membrane protein band 4.1-like 3 (EPB41L3) increased in the lung fibroblasts of IPF patients. Thus, we investigated the role of EPB41L3 in IPF by comparing the EPB41L3 mRNA and protein expression of lung fibroblast between patients with IPF and controls. We also investigated the regulation of epithelial-mesenchymal transition (EMT) in an epithelial cell line (A549) and fibroblast-to-myofibroblast transition (FMT) in a fibroblast cell line (MRC5) by overexpressing and silencing EPB41L3. EPB41L3 mRNA and protein levels, as measured using RT-PCR, real-time PCR, and Western blot, were significantly higher in fibroblasts derived from 14 IPF patients than in those from 10 controls. The mRNA and protein expression of EPB41L3 was upregulated during transforming growth factor-ß-induced EMT and FMT. Overexpression of EPB41L3 in A549 cells using lenti-EPB41L3 transfection suppressed the mRNA and protein expression of N-cadherin and COL1A1. Treatment with EPB41L3 siRNA upregulated the mRNA and protein expression of N-cadherin. Overexpression of EPB41L3 in MRC5 cells using lenti-EPB41L3 transfection suppressed the mRNA and protein expression of fibronectin and α-SMA. Finally, treatment with EPB41L3 siRNA upregulated the mRNA and protein expression of FN1, COL1A1, and VIM. In conclusion, these data strongly support an inhibitory effect of EPB41L3 on the process of fibrosis and suggest the therapeutic potential of EPB41L3 as an anti-fibrotic mediator.


Assuntos
Fibrose Pulmonar Idiopática , Fator de Crescimento Transformador beta1 , Humanos , Fator de Crescimento Transformador beta1/metabolismo , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Fibroblastos/metabolismo , Transição Epitelial-Mesenquimal/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Caderinas/metabolismo , Proteínas dos Microfilamentos/metabolismo
9.
Allergy Asthma Immunol Res ; 15(2): 174-185, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37021504

RESUMO

PURPOSE: A subset of asthmatics suffers from persistent airflow limitation, known as remodeled asthma, despite optimal treatment. Typical quantitative scoring methods to evaluate structural changes of airway remodeling on high-resolution computed tomography (HRCT) are time-consuming and laborious. Thus, easier and simpler methods are required in clinical practice. We evaluated the clinical usefulness of a simple, semi-quantitative method based on 8 HRCT parameters by comparing asthmatics with a persistent decline of post-bronchodilator (BD)-FEV1 to those with a BD-FEV1 that normalized over time and evaluated the relationships of the parameters with BD-FEV1. METHODS: Asthmatics (n = 59) were grouped into 5 trajectories (Trs) according to the changes of BD-FEV1 over 1 year. After 9-12 months of guideline-based treatment, HRCT parameters including emphysema, bronchiectasis, anthracofibrosis, bronchial wall thickening (BWT), fibrotic bands, mosaic attenuation on inspiration, air-trapping on expiration, and centrilobular nodules were classified as present (1) or absent (0) in 6 zones. RESULTS: The Tr5 group (n = 11) was older and exhibited a persistent decline in BD-FEV1. The Tr5 and Tr4 groups (n = 12), who had a lower baseline BD-FEV1 that normalized over time, had longer durations of asthma, frequent exacerbations, and higher doses of steroid use compared to the Tr1-3 groups (n = 36), who had a normal baseline BD-FEV1. The Tr5 group had higher emphysema and BWT scores than the Tr4 (P = 8.25E-04 and P = 0.044, respectively). Scores for the other 6 parameters were not significantly different among the Tr groups. BD-FEV1 was inversely correlated with the emphysema and BWT scores in multivariate analysis (P = 1.70E-04, P = 0.006, respectively). CONCLUSIONS: Emphysema and BWT are associated with airway remodeling in asthmatics. Our simple, semi-quantitative scoring system based on HRCT may be an easy-to-use method for estimating airflow limitation.

10.
Biosens Bioelectron ; 230: 115269, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37001292

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease of complex pathogenesis, with overt symptoms following disease progression. Early AD diagnosis is challenging due to the lack of robust biomarkers and limited patient access to diagnostics via neuroimaging and cerebrospinal fluid (CSF) tests. Exosomes present in body fluids are attracting attention as diagnostic biomarkers that directly reflect neuropathological features within the brain. In particular, exosomal miRNAs (exomiRs) signatures are involved in AD pathogenesis, showing a different expression between patients and the healthy controls (HCs). However, low yield and high homologous nature impede the accuracy and reproducibility of exosome blood-based AD diagnostics. Here, we developed a programmable curved plasmonic nanoarchitecture-based biosensor to analyze exomiRs in clinical serum samples for accurate AD diagnosis. To allow the detection of exomiRs in serum at attomolar levels, nanospaces (e.g., nanocrevice and nanocavity) were introduced into the nanostructures to dramatically increase the spectral sensitivity by adjusting the bending angle of the plasmonic nanostructure through sodium chloride concentration control. The developed biosensor classifies individuals into AD, mild cognitive impairment (MCI) patients, and HCs through profiling and quantifying exomiRs. Furthermore, integrating analysis expression patterns of multiple exosomal biomarkers improved serum-based diagnostic performance (average accuracy of 98.22%). Therefore, precise, highly sensitive serum-derived exosomal biomarker detection-based plasmonic biosensor has a robust capacity to predict the molecular pathologic of neurodegenerative disease, progression of cognitive decline, MCI/AD conversion, as well as early diagnosis and treatment.


Assuntos
Doença de Alzheimer , Técnicas Biossensoriais , MicroRNAs , Doenças Neurodegenerativas , Humanos , Reprodutibilidade dos Testes , Biomarcadores , Peptídeos beta-Amiloides , Progressão da Doença
11.
Pharmacogenet Genomics ; 32(8): 281-287, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35997042

RESUMO

BACKGROUND: Aspirin-exacerbated respiratory disease (AERD), an asthma phenotype, often presents with severe manifestations and it remains widely underdiagnosed because of insufficient awareness of the relationship between the ingestion of nonsteroidal anti-inflammatory drugs, including acetylsalicylic acid (ASA), and asthma exacerbation. Our previous genome-wide association study demonstrated an association between a single nucleotide polymorphism (SNP) of the ATP8B3 gene and the risk of AERD. This study examined AERD-related SNPs of the ATP8B3 gene in a large population. METHODS: Twenty-five SNPs of ATP8B3 were genotyped with the GoldenGate assay using VeraCode microbeads in 141 asthmatics with AERD and 995 Aspirin-tolerant asthma (ATA). The genotype distribution was analyzed using logistic regression models. The declines in forced expiratory volume in 1 second (FEV1)following an ASA challenge were compared among the genotypes and haplotypes using a type III generalized linear model. RESULTS: The minor allele frequencies (MAFs) of rs10421558 A>G in the 5'UTR and rs10403288 G>A in the intron were significantly lower in the AERD than the ATA [34.0% vs. 43.8%, OR = 0.66 (0.62-0.92), Pcorr = 0.03 and 28.4% vs. 35.4%, OR = 0.62 (0.59-0.89), Pcorr = 0.016, respectively]. BL1ht5 was significantly higher in the AERD [7.6% vs. 1.6%, OR = 12.23 (0.2-0.51), P = 4.7 × 10 -4 , Pcorr = 0.001]. Among them, rs10421558 A>G and BL1ht5 were associated with the percent decline in FEV1 on the oral ASA challenge test. CONCLUSION: The minor allele of rs10421558 A>G in the 5'UTR may protect against the development of AERD via the increased production of ATP8B3.


Assuntos
Adenosina Trifosfatases , Aspirina , Asma Induzida por Aspirina , Regiões 5' não Traduzidas , Adenosina Trifosfatases/genética , Aspirina/efeitos adversos , Asma Induzida por Aspirina/genética , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único
12.
Int J Biol Macromol ; 217: 910-921, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35908673

RESUMO

Cholinesterase (ChE) and monoamine oxidase (MAO) inhibitors are being used and developed to treat Alzheimer's disease (AD), a major type of dementia patients. Fifteen 4-substituted benzyl-2-triazole-linked-tryptamine-paeonol derivatives were synthesized and evaluated for their inhibitory activities against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), monoamine oxidase-A (MAO-A), and B (MAO-B). Compound 896 was the most potent BChE inhibitor (IC50 = 0.13 µM) with the selectivity index (SI) value of >769.23 for BChE over AChE. Compound 897 was the most potent selective MAO-B inhibitor (IC50 = 0.73 µM; SI = 20.45 for MAO-B over MAO-A). The meta-CF3 substituent of 896 increased BChE inhibitory activity and the para-CF3 substituent of 897 increased MAO-B inhibitory activity. Compound 896 was a reversible noncompetitive BChE inhibitor (Ki = 0.171 µM) and 897 was a reversible competitive MAO-B inhibitor (Ki = 0.237 µM). Compound 896 had a lower binding energy (-13.75 kcal/mol) to BChE than 897 (-11.29 kcal/mol), and 897 had a lower binding energy to MAO-B (-11.31 kcal/mol) than that to MAO-A (-6.72 kcal/mol). Little cytotoxicity was observed for 896 and 897 to normal cells (MDCK) and human neuroblastoma cells (SH-SY5Y). This study suggested that 896 and 897 are therapeutic candidates for various neurodegenerative disorders such as AD.


Assuntos
Doença de Alzheimer , Neuroblastoma , Acetofenonas , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase/química , Inibidores da Colinesterase/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Monoaminoxidase/química , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/farmacologia , Neuroblastoma/tratamento farmacológico , Relação Estrutura-Atividade , Triazóis , Triptaminas
13.
Pharmacogenet Genomics ; 32(6): 226-234, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35696287

RESUMO

BACKGROUND: Significant changes in CpG methylation have been identified in nasal polyps, which are the main targets of nonsteroidal anti-inflammatory drug-exacerbated respiratory disease (NERD); however, these polyps are composed of various cellular components. In the present study, whole-genome CpG methylation in peripheral blood lymphocytes (PBLs) was analyzed to define the epigenetic changes in lymphocytes, which are the primary immune cells involved in NERD. MATERIALS AND METHODS: Genomic DNA from peripheral blood mononuclear cells from 27 NERD and 24 aspirin-tolerant asthma (ATA) was subjected to bisulfate conversion and a methylation array. Quantitative CpG methylation, the ß-values as a quantitative measure of DNA methylation, in lymphocytes were calculated after adjustments for cellular composition. RESULTS: Fifty-six hypermethylated and three hypomethylated differentially methylated CpGs (DMCs) in PBLs in the NERD compared with ATA. The top 10 CpG loci predicted the methylation risk score, with a positive predictive value of 91.3%, a negative predictive value of 81.5% and an accuracy of 84.3%. As demonstrated in the nasal polyps, 30 DMCs were predicted to bind to the following 10 transcription factors, ranked in descending order: AP-2alphaA, TFII-1, STAT4, FOXP3, GR, c-Est-1, E2F-1, XBP1, ENKTF-1 and NF-1. Gene ontology analysis identified 13 categories such as regulation of T-helper 17 cell differentiation, including SMAD7 and NFKBIZ. PBLs in NERD contained no DMCs in genes associated with the prostaglandin and leukotriene pathways, which were found in ATA. CONCLUSION: PBLs in NERD form a unique pattern of DNA CpG methylation, and the combined analysis may provide predictive values for NERD.


Assuntos
Asma , Pólipos Nasais , Anti-Inflamatórios não Esteroides/efeitos adversos , Ilhas de CpG/genética , DNA/metabolismo , Metilação de DNA/genética , Humanos , Leucócitos Mononucleares , Linfócitos/metabolismo
14.
Korean J Intern Med ; 37(5): 979-988, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35730133

RESUMO

BACKGROUND/AIMS: Neutrophilia is frequently observed in bronchoalveolar lavage fluid (BALF) of idiopathic pulmonary fibrosis (IPF) patients. Granulocyte colony-stimulating factor (G-CSF) is a potent neutrophil-activating glycoprotein. However, the clinical implications of G-CSF remain poorly understood.in patients with IPF. Therefore, we evaluated the relationship between the G-CSF concentration in BALF and the progression of fibrosis, including in terms of the decline in lung function and long-term survival rate. METHODS: G-CSF concentrations were measured in BALF using enzyme-linked immunosorbent assay (ELISA). The survival rate was estimated using Kaplan-Meier survival analyses. RESULTS: G-CSF protein levels were significantly higher in IPF (n = 87; 1.88 [0 to 5.68 pg/mL]), nonspecific interstitial pneumonia (n = 22; 0.58 [0 to 11.64 pg/mL]), and hypersensitivity pneumonitis (n = 19; 2.48 [0.46 to 5.71 pg/mL]) patients than in normal controls (n = 33; 0 [0 to 0.68 pg/mL]) (all p < 0.01). A receiver operating characteristic curve showed a difference in G-CSF levels between IPF and NC (area under the curve, 0.769): The G-CSF cut-off of 0.96 pg/mL indicated 84.9% specificity and 63.2% sensitivity for IPF. The survival rate was significantly lower in the group with G-CSF > 2.872 pg/mL than in the group with ≤ 2.872 pg/mL (hazard ratio, 2.69; p = 0.041). The annual decline in diffusing capacity of the lung for carbon monoxide was positively correlated with the G-CSF level (p = 0.018). CONCLUSION: G-CSF may participate in the development of IPF and be useful for predicting the prognosis of IPF. Therefore, G-CSF should be analyzed in BALF, in addition to differential cell counts.


Assuntos
Fibrose Pulmonar Idiopática , Biomarcadores/análise , Líquido da Lavagem Broncoalveolar , Fator Estimulador de Colônias de Granulócitos , Humanos , Fibrose Pulmonar Idiopática/diagnóstico , Prognóstico
15.
Exp Mol Med ; 54(5): 662-672, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35624153

RESUMO

Excessive oxidative stress causes lysosomal membrane permeabilization (LMP), which leads to cell death. Vacuolar ATPase (V-ATPase) is the enzyme responsible for pumping H+ into the cytosol and thus maintaining intracellular pH. Previously, we reported that V-ATPase B2 subunit expression is upregulated in the TiO2-exposed lung epithelium. We investigated the role of the lysosomal V-ATPase B2 subunit in oxidative stress-induced alveolar epithelial cell death and in an experimental lung injury/fibrosis model. Overexpression of V-ATPase B2 increased lysosomal pH and lysosomal activities in the cells. In the presence of H2O2, overexpression of V-ATPase B2 increased survival, and silencing of V-ATPase B2 dramatically increased cell death. Overexpression of V-ATPase B2 diminished H2O2-triggered LMP, as evidenced by a reduction in acridine orange staining and leakage of cathepsin D from the lysosome to the cytoplasm. In addition, V-ATPase B2-overexpressing macrophages exhibited significantly enhanced uptake and degradation of collagen. V-ATPase B2-overexpressing transgenic mice showed significant inhibition of the bleomycin-induced increases in lung inflammation and fibrosis. We conclude that V-ATPase B2 is critical for maintaining lysosomal activities against excessive oxidative stress by stabilizing LMP. Our findings reveal a previously unknown role of this V-ATPase subunit in a lung injury and fibrosis model.


Assuntos
Lesão Pulmonar , Fibrose Pulmonar , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Colágeno/metabolismo , Fibrose , Peróxido de Hidrogênio/metabolismo , Lesão Pulmonar/genética , Lesão Pulmonar/metabolismo , Lisossomos/metabolismo , Camundongos , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética
16.
Respir Med ; 199: 106877, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35606283

RESUMO

PURPOSE: Exacerbation of asthma is affected by genetic and environmental factors, but little is known about genetic differences according to smoking status. We evaluated genetic factors associated with asthma exacerbations in smokers and non-smokers, and identified the underlying mechanisms via a genome-wide association study (GWAS) and gene-level analyses according to smoking status. METHODS: A GWAS on the annual frequency of asthma exacerbations was performed in 420 non-smoking and 188 smoking patients with asthma. Gene-wise associations were analyzed by Multi-marker Analysis of GenoMic Annotation (MAGMA); Gene Ontology analysis was also performed. RESULTS: In the non-smoker group, 189 genes showed significant associations with the annual frequency of exacerbations (permutated P < 0.001). The top 10 genes were F5, KLRC1, TAFA2, AIRE, IER3IP1, CHMP2A, IL31RA, ZNF497, DNMT3L, and MYT1L (permutated P = 1.0 × 10-4 - 1.7 × 10-4). In smoking asthmatics, 140 genes-including KANK1, ZMYND12, ZNF34, ANXA11, VAV2, CCDC150, CCDC30, CATSPER3, ARMH2, and MPRIP (permutated P = 9.23 × 10-5 - 5.50 × 10-4)-were associated with asthma exacerbations. Genes participating in the innate immune response in non-smokers and the regulation of cell fate (including apoptosis) in smokers were the major causal genes of asthma exacerbation (FDR q < 0.05). CONCLUSIONS: Our findings not only suggest novel genetic candidates for predicting asthma exacerbations, but also that asthma treatment strategies should take into account smoking behavior.


Assuntos
Asma , Estudo de Associação Genômica Ampla , Proteínas Adaptadoras de Transdução de Sinal , Asma/genética , Proteínas do Citoesqueleto/genética , Humanos , Canais Iônicos/genética , Fumantes
17.
Biosens Bioelectron ; 205: 114116, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35235898

RESUMO

The urinary exosomal miRNAs are recently emerging prostate cancer (PC)-associated biomarkers for the early-stage diagnosis and prognosis due to their non-invasiveness, inherent stability and the representation of the status of the originated cells. However, developing a urinary exosomal miRNA detection method with high accuracy is challenging because of the low abundance and high sequence homology of miRNAs. Herein, we present a quantitative and label-free miRNA sensing platform using surface-enhanced Raman scattering (SERS) based on three-dimensional (3D) hierarchical plasmonic nano-architecture to detect urinary exosomal miRNAs. This hierarchical nanostructure is constructed by self-assembly between target-complementary DNA probes-conjugated gold nanoparticles and head-flocked gold nanopillars in the presence of the target miRNAs, creating numerous 3D plasmonic hot-spots inducing exceedingly high amplification of SERS signals. This 3D SERS biosensor achieved ∼10 aM detection limits for the target miRNAs (miR-10a and miR-21), which is over 1000-fold more sensitive than previously reported miRNA sensors without the requirement of any labelling or pre-treatment steps. Finally, the clinical validation using urinary samples revealed that our 3D SERS sensor discriminates PC patients from healthy control with high diagnostic accuracy (0.93) based on the differential expression level of urinary exosomal miRNAs. These outputs demonstrate that our SERS sensor based on 3D hierarchical nano-architecture can offer facile, accurate and rapid methods to measure miRNA expression and is helpful for the diagnosis of various diseases.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , MicroRNAs , Neoplasias da Próstata , Técnicas Biossensoriais/métodos , Ouro/química , Humanos , Masculino , Nanopartículas Metálicas/química , MicroRNAs/genética , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Análise Espectral Raman/métodos
18.
Can Respir J ; 2022: 7977937, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186174

RESUMO

BACKGROUND: Toluene diisocyanate (TDI) causes occupational asthma by generating oxidative stress, leading to tissue injury and inflammation. Glutathione transferases (GSTs) are detoxifying enzymes that eliminate oxidative stress. We examined whether the genotypes of the GSTM1 and GSTT1 genes are associated with TDI-induced occupational asthma (TDI-OA). METHODS: The study population consisted of 26 asthmatics with a positive response to the TDI challenge (TDI-PA) and 27 asthmatics with negative responses (TDI-NA). GSTM1 and GSTT1 null and wild-type genotypes were determined using multiplex PCR. The plasma GSTM1 and GSTT1 protein concentrations were determined using ELISA. RESULTS: The GSTM1 null genotype was more frequent in the TDI-PA than in the TDI-NA (77.8 vs. 50.0%, OR = 3.5, p=0.03), while the frequency of the GSTT1 null genotype tended to be higher in the TDI-PA than in the TDI-NA (59.3 vs. 42.3%, OR = 1.98, p=0.21). When analyzed together, the GSTM1/GSTT1 null genotype was more frequent in the TDI-PA than in the TDI-NA (48.2 vs. 15.3%, OR = 6.5, p=0.04). The decline in the FEV in 1 s after TDI challenge was higher with the GSTM1/GSTT1 null than the GSTM1 wild-type/GSTT1 null genotypes (24.29% vs. 7.47%, p=0.02). The plasma GSTM1 level was lower with the GSTM1 null than with the GSTM1 wild-type genotypes both before (13.7 vs. 16.6 ng/mg, p=0.04) and after (12.9 vs. 17.1 ng/mg, p=0.007) the TDI challenge, while the GSTT1 level was not changed with either the GSTT1 null or wild-type genotype. CONCLUSIONS: The GSTM1 null genotype, but not GSTT1 alone, may confer susceptibility to TDI-OA. However, the genetic effect of the GSTM1 null genotype may be enhanced synergistically by the GSTT1 null genotype. The genetic effect of GSTM1 was validated in the plasma as the GSTM1 protein level. Therefore, the GSTM1 and GSTT1 genotypes may be useful diagnostic markers for TDI-OA.


Assuntos
Asma Ocupacional , Tolueno 2,4-Di-Isocianato , Asma Ocupacional/induzido quimicamente , Asma Ocupacional/genética , Estudos de Casos e Controles , Predisposição Genética para Doença , Genótipo , Glutationa Transferase/genética , Humanos , Polimorfismo Genético , Fatores de Risco
19.
BMC Pulm Med ; 22(1): 3, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983467

RESUMO

BACKGROUND: Asthma exacerbation threatens patient's life. Several genetic studies have been conducted to determine the risk factors for asthma exacerbation, but this information is still lacking. We aimed to determine whether genetic variants of Oxidative Stress Responsive Kinase 1 (OXSR1), a gene with functions of salt transport, immune response, and oxidative stress, are associated with exacerbation of asthma. METHODS: Clinical data were obtained from 1454 asthmatics and single nucleotide polymorphisms (SNPs) of OXSR1 were genotyped. Genetic associations with annual exacerbation rate were analyzed depending on smoking status. RESULTS: Eleven SNPs were selected using Asian data in the International HapMap database. The common allele of rs1384006 C > T of OXSR1 showed a significantly higher annual exacerbation rate than the rare allele in non-smoking asthmatics (CC vs. CT vs. TT: 0.43 ± 0.04 vs. 0.28 ± 0.03 vs. 0.31 ± 0.09, P = 0.004, Pcorr = 0.039). The frequent exacerbators had a significantly higher frequency of the common allele of rs1384006 C > T than did the infrequent exacerbators (74.4% vs. 55.2%, P = 0.004, Pcorr = 0.038). CONCLUSION: The common allele of rs1384006 C > T of OXSR1 was associated with the asthma exacerbation rate and a higher risk of being a frequent exacerbator, indicating that non-smoking asthmatics who carry common alleles may be vulnerable to asthma exacerbations.


Assuntos
Asma/genética , Proteínas Serina-Treonina Quinases/genética , Adulto , Idoso , Alelos , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , não Fumantes/estatística & dados numéricos , Estresse Oxidativo , Polimorfismo de Nucleotídeo Único , República da Coreia , Fatores de Risco
20.
Anal Chim Acta ; 1195: 339445, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35090659

RESUMO

Blood-based detection of Alzheimer's disease (AD) biomarker has become a prominent method for diagnosis of AD which can replace the complex and invasive cerebrospinal fluid (CSF)-based diagnostic method. However, the application of blood AD biomarker in actual AD diagnosis is hampered by the extremely low concentration of biomarkers in blood, as well as the existence of interfering proteins. Therefore, it is essential to develop a sensitive and specific detection platform to achieve blood-based diagnosis of AD. Here, a surface-enhanced Raman scattering (SERS)-based sensor is developed for the quantitative determination of tau protein in the plasma of AD patients. To acquire femtomolar-level detection limit, this platform involves the use of half antibody fragment immobilized onto head-flocked gold nanopillar SERS substrates and SERS-nanotags. The small size of the half antibody fragment maximizes the effect of plasmon coupling, by reducing the distance between SERS substrates and SERS-nanotags. Also, the use of half antibody fragment improves the antigen recognition ability by immobilizing the antibody with high density and efficient orientation of the antibody. The sensor using these characteristics showed a low detection limit of 3.21 fM and a wide detection range (10 fM - 1 µM). The platform was also able to accurately quantify the tau protein in the clinical plasma sample and correctly distinguish the AD patient from the healthy control. The ultrasensitive and specific SERS immunoassay platform facilitates accurate and early detection of AD biomarkers and can serve as a valuable tool for simple point-of-care testing in clinical diagnosis.


Assuntos
Doença de Alzheimer , Técnicas Biossensoriais , Nanopartículas Metálicas , Doença de Alzheimer/diagnóstico , Biomarcadores , Humanos , Imunoensaio , Fragmentos de Imunoglobulinas , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...